0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe describe a method for repetitive and rapid formation of planar microarrays and gradients of proteins using patterned agarose stamps. It demonstrates: (i) micropatterning of agarose gels with feature sizes as small as 2 microm; (ii) inking of posts (diameter 50-1000 microm) on patterned agarose stamps with one or multiple (here, eight) proteins and repetitive stamping of patterns (>100 times in the case of one protein) and arrays (20 times in the case of eight proteins) without the need for intermediate re-inking; (iii) transferring spots of proteins with good homogeneity in surface coverage to glass slides; (iv) applying this technique to surface-based immunoassays; (v) stamping that requires only sub-nanomolar amounts of protein (typically approximately 3 microg in approximately 0.6 microL of solution); (vi) stamping without the need for drying of the proteins, as opposed to stamping with stamps made of poly(dimethylsiloxane); and (vii) patterning gradients of proteins by allowing two proteins to diffuse toward each other in an agarose stamp, followed by printing the protein gradients onto a surface.
Michael Mayer, Jerry Yang, Irina Gitlin, David H. Gracias, George M M Whitesides (2004). Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins. , 4(8), DOI: https://doi.org/10.1002/pmic.200300748.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2004
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/pmic.200300748
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration