RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil

0 Datasets

0 Files

English
2017
Soil Biology and Biochemistry
Vol 117
DOI: 10.1016/j.soilbio.2017.10.024

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Davey L Jones
E.A. Magthab
Deirdre B. Gleeson
+5 more

Abstract

Most studies on plant nutrition tend to focus on the topsoil (plough layer) and frequently neglect subsoil processes. However, cereal roots can potentially acquire nutrients including organic and inorganic nitrogen (N) from deep in the soil profile. Greater knowledge on the interaction of plants and microbes in subsoil environments is required to evaluate whether deep rooting traits in cereals will achieve greater nutrient use efficiency and greater soil carbon (C) storage in cropping systems. This study aimed to evaluate the relationship between root distribution, organic and inorganic N availability and potential N supply at the critical growth period during the wheat cropping cycle in a sand textured Eutric Cambisol. Our results provide evidence of significant microbial capacity in the subsoil. The rate of plant residue turnover and the mineralization of organic C and N substrates (glucose, amino acids, peptides, protein) declined slightly with increasing soil depth; however, these rates were not correlated with basal soil respiration, microbial biomass or community structure. This suggests that the microbial population in subsoil is more C limited but that its activity can be readily stimulated upon C substrate addition. A significant potential for organic and inorganic N turnover was also demonstrated at depth with a similar abundance of ammonifiers and ammonia oxidizing bacteria (AOB) and archaea (AOA) throughout the soil profile. Again, N mineralization in subsoils appears to be substrate limited. Root density declined rapidly down the soil profile with few roots present past 50 cm; suggesting that this is the major factor limiting C recharge of soil organic matter and microbial activity in subsoils. Greater root proliferation at depth could allow greater capture of water and the recapture of N lost by leaching; however, our results suggest that plant-microbial competition for C and N is as intense in the subsoil as in the topsoil. We conclude that while deeper rooting may improve nutrient and water use efficiency it may not lead to much greater C sequestration in subsoils, at least in the short term.

How to cite this publication

Davey L Jones, E.A. Magthab, Deirdre B. Gleeson, Paul W. Hill, Antonio Rafael Sánchez‐Rodríguez, Paula Roberts, Tida Ge, Daniel V. Murphy (2017). Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biology and Biochemistry, 117, pp. 72-82, DOI: 10.1016/j.soilbio.2017.10.024.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2017.10.024

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access