0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTouch screen technology supplies a new approach to interact with virtual environments. For haptic interaction on a touch screen, haptic devices that are capable of simultaneously conveying tactile and force information to users are highly desired for enhancing the sense of reality and immersion. To this end, a prototype haptic interface, called MH-Pen, was developed and fabricated to display the virtual interactive information through multi-mode haptic feedback. The MH-Pen is a self-contained system that provides vibrotactile feedback and precise force feedback by integrating three types of actuators. In this paper, MH-Pen's design, specifications, and working principle are described. Subsequently, to accurately display the interaction force, a hybrid actuator was designed by combining a piston-type magnetorheological (MR) actuator and a voice coil motor (VCM), and a closed-loop control scheme was built to manage the hybrid actuator. Finally, we objectively and subjectively evaluated the force feedback performance and the effect of multi-mode haptic display of the MH-Pen through physical measurements and psychophysical experiments of virtual surface stiffness display. The results show that improving the precision of force feedback and using multi-mode haptic display are both useful and necessary to enhance the sense of human-computer interaction realism.
Dapeng Chen, Aiguo Song, Lei Tian, Yuqing Yu, Lifeng Zhu (2018). MH-Pen: A Pen-type Multi-mode Haptic Interface for Touch Screens Interaction. , DOI: https://doi.org/10.1109/toh.2018.2826551.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/toh.2018.2826551
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access