0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMethionine restriction, i.e., a partial depletion of the essential sulfur amino acid methionine from nutrition, extends lifespan in model organisms including yeast, nematodes, mice and rats. Recent results indicate that this strategy also prolongs health span and longevity in 2 short-lived strains of mice (with the LmnaG609G/G609G or zmpste24−/- genotypes) that represent animal models of Hutchinson-Gilford progeria syndrome (HGPS). The beneficial effects of methionine restriction on HGPS could be linked to reduced inflammation, and improved DNA stability, as well as the normalization of lipid and bile acid metabolism. Previous work has established that behavioral, nutritional, pharmacological and genetic manipulations that extend longevity in model organisms are only efficient if they induce increased autophagic flux. Methionine restriction extends lifespan in Saccharomyces cerevisiae in an Atg5- and Atg7-dependent fashion, supporting the notion that methionine restriction may indeed mediate its antiaging effects through the induction of macroautophagy/autophagy as well. Based on these findings, we speculate that autophagy might constitute an actionable therapeutic target to treat progeroid syndromes.
Clea Bárcena, Carlos López-Otı́n, Guido Guido Kroemer (2018). Methionine restriction for improving progeria: another autophagy-inducing anti-aging strategy?. , 15(3), DOI: https://doi.org/10.1080/15548627.2018.1533059.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1080/15548627.2018.1533059
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access