0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAlthough widely used in various fields due to its powerful capability of signal processing, empirical mode decomposition has to decompose signals separately, which limits its application for multivariate data such as the structural monitoring data recorded by multiple sensors. In order to avoid this shortcoming, a multivariate extension of empirical mode decomposition is proposed to deal with the multidimensional signals synchronously by employing a real-valued projection on hyperspheres. This study presents a hybrid modal identification method combining the multivariate empirical mode decomposition with stochastic subspace identification and fast Bayesian FFT methods to more conveniently and accurately identify structural dynamic parameters from multi-sensor vibration measurements. Deployed as a preprocessing tool, the multivariate signals are decomposed into several aligned intrinsic mode functions, which contain only a dominant component in the frequency domain. Then, the modal parameters can be identified by advanced fast Bayesian FFT and stochastic subspace identification directly. The combined method is first validated by a numerical illustration of a frame structure and then is applied in a shaking table test and a full-scale measurement under nonstationary earthquake excitation. Compared with the finite element method, the peak–pick, the half-power bandwidth methods, and Hilbert–Huang transform method, the results show that this hybrid method is more robust and reliable in the modal parameters identification. The main contribution of this paper is to develop a more effective integrated approach for accurate modal identification with the output-only multi-dimensional nonstationary signal.
Mingfeng Huang, Jian‐Ping Sun, Kang Cai, Qiang� Li (2022). MEMD-Based Hybrid Modal Identification for High-Rise Structures with Multi-Sensor Vibration Measurements. Applied Sciences, 12(16), pp. 8345-8345, DOI: 10.3390/app12168345.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Applied Sciences
DOI
10.3390/app12168345
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access