Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. MEMD-Based Hybrid Modal Identification for High-Rise Structures with Multi-Sensor Vibration Measurements

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

MEMD-Based Hybrid Modal Identification for High-Rise Structures with Multi-Sensor Vibration Measurements

0 Datasets

0 Files

English
2022
Applied Sciences
Vol 12 (16)
DOI: 10.3390/app12168345

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Kang Cai
Kang Cai

Institution not specified

Verified
Mingfeng Huang
Jian‐Ping Sun
Kang Cai
+1 more

Abstract

Although widely used in various fields due to its powerful capability of signal processing, empirical mode decomposition has to decompose signals separately, which limits its application for multivariate data such as the structural monitoring data recorded by multiple sensors. In order to avoid this shortcoming, a multivariate extension of empirical mode decomposition is proposed to deal with the multidimensional signals synchronously by employing a real-valued projection on hyperspheres. This study presents a hybrid modal identification method combining the multivariate empirical mode decomposition with stochastic subspace identification and fast Bayesian FFT methods to more conveniently and accurately identify structural dynamic parameters from multi-sensor vibration measurements. Deployed as a preprocessing tool, the multivariate signals are decomposed into several aligned intrinsic mode functions, which contain only a dominant component in the frequency domain. Then, the modal parameters can be identified by advanced fast Bayesian FFT and stochastic subspace identification directly. The combined method is first validated by a numerical illustration of a frame structure and then is applied in a shaking table test and a full-scale measurement under nonstationary earthquake excitation. Compared with the finite element method, the peak–pick, the half-power bandwidth methods, and Hilbert–Huang transform method, the results show that this hybrid method is more robust and reliable in the modal parameters identification. The main contribution of this paper is to develop a more effective integrated approach for accurate modal identification with the output-only multi-dimensional nonstationary signal.

How to cite this publication

Mingfeng Huang, Jian‐Ping Sun, Kang Cai, Qiang� Li (2022). MEMD-Based Hybrid Modal Identification for High-Rise Structures with Multi-Sensor Vibration Measurements. Applied Sciences, 12(16), pp. 8345-8345, DOI: 10.3390/app12168345.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Applied Sciences

DOI

10.3390/app12168345

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access