0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLiquid- phase exfoliation (LPE) is the principal method of producing two-dimensional (2D) materials such as graphene in large quantities with a good balance between quality and cost and is now widely adopted by both the academic and industrial sectors. The fragmentation and exfoliation mechanisms involved have usually been simply attributed to the force induced by ultrasound and the interaction with the solvent molecules. Nonetheless, little is known about how they actually occur, i.e., how thick and large graphite crystals can be exfoliated into thin and small graphene flakes. Here, we demonstrate that during ultrasonic LPE the transition from graphite flakes to graphene takes place in three distinct stages. First, sonication leads to the rupture of large flakes and the formation of kink band striations on the flake surfaces, primarily along zigzag directions. Second, cracks form along these striations, and together with intercalation of solvent, lead to the unzipping and peeling off of thin graphite strips that in the final stage are exfoliated into graphene. The findings will be of great value in the quest to optimize the lateral dimensions, thickness, and yield of graphene and other 2D materials in large-scale LPE for various applications.
Zheling Li, Robert J. Young, Claudia Backes, Wen Zhao, Xun Zhang, A. A. Zhukov, Evan Tillotson, Aidan P. Conlan, Feng Ding, Sarah J. Haigh, Konstantin ‘kostya’ Novoselov, Jonathan N. Coleman (2020). Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 14(9), pp. 10976-10985, DOI: 10.1021/acsnano.0c03916.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
ACS Nano
DOI
10.1021/acsnano.0c03916
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access