0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Although much effort has been put in the studies of weak in vivo microscale movements due to its importance, the real‐time, long‐time, and accurate monitoring is still a great challenge because of the complexity of the in vivo environment. Here, a new type of mechanically asymmetrical triboelectric nanogenerator with ultrashort working distance and high anti‐interference ability is developed to accurately and real‐timely monitor the microscopically weak movement of intestinal motility at low frequencies even around 0.3 Hz. The intestinal status after the glucose absorption, and physiological states in different times also have been monitored successfully in the complex in vivo environment with many kinds of interference and noises. This work gives a new self‐powered, long‐time and in vivo technical way for the real‐timely gastrointestinal motility monitoring, and contributes to the detection of every kind of gentle movements in various complex bio‐systems.
Bolang Cheng, Jianxiu Ma, Gaoda Li, Suo Bai, Qi Xu, Xin Cui, Li Cheng, Yong Qin, Zhong Lin Wang (2020). Mechanically Asymmetrical Triboelectric Nanogenerator for Self‐Powered Monitoring of In Vivo Microscale Weak Movement. , 10(27), DOI: https://doi.org/10.1002/aenm.202000827.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/aenm.202000827
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access