0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTwo-dimensional (2D) tungsten disulfide (WS2), tungsten diselenide (WSe2), and tungsten ditelluride (WTe2) draw increasing attention due to their attractive properties deriving from the heavy tungsten and chalcogenide atoms, but their mechanical properties are still mostly unknown. Here, we determine the intrinsic and air-aged mechanical properties of mono-, bi-, and trilayer (1–3L) WS2, WSe2, and WTe2 using a complementary suite of experiments and theoretical calculations. High-quality 1L WS2 has the highest Young's modulus (302.4 ± 24.1 GPa) and strength (47.0 ± 8.6 GPa) of the entire family, overpassing those of 1L WSe2 (258.6 ± 38.3 and 38.0 ± 6.0 GPa, respectively) and WTe2 (149.1 ± 9.4 and 6.4 ± 3.3 GPa, respectively). However, the elasticity and strength of WS2 decrease most dramatically with increased thickness among the three materials. We interpret the phenomenon by the different tendencies for interlayer sliding in an equilibrium state and under in-plane strain and out-of-plane compression conditions in the indentation process, revealed by the finite element method and density functional theory calculations including van der Waals interactions. We also demonstrate that the mechanical properties of the high-quality 1–3L WS2 and WSe2 are largely stable in air for up to 20 weeks. Intriguingly, the 1–3L WSe2 shows increased modulus and strength values with aging in the air. This is ascribed to oxygen doping, which reinforces the structure. The present study will facilitate the design and use of 2D tungsten dichalcogenides in applications such as strain engineering and flexible field-effect transistors.
Alexey Falin, Matthew Holwill, Haifeng Lv, Wei Gan, Jun Cheng, Rui Zhang, Dong Qian, Matthew Barnett, Elton J. G. Santos, Konstantin ‘kostya’ Novoselov, Tao Tao, Xiaojun Wu, Lu Hua Li (2021). Mechanical Properties of Atomically Thin Tungsten Dichalcogenides: WS<sub>2</sub>, WSe<sub>2</sub>, and WTe<sub>2</sub>. ACS Nano, 15(2), pp. 2600-2610, DOI: 10.1021/acsnano.0c07430.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
ACS Nano
DOI
10.1021/acsnano.0c07430
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access