0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study examines how incorporating ultrafine cerium dioxide particles (UFCe) into recycled coarse aggregate concrete affects its physical, mechanical, and long-term properties. No analogous research exists about the impact of ultrafine cerium dioxide particles on various characteristics of concrete containing recycled aggregates (RCA). UFCe was employed, and its mean particle size was 350 nm in different doses (0.0, 0.5, 1.0, and 1.5 % by cement weight) to explore its effect on the properties of concrete containing 25 % coarse aggregates (RCA) prepared from ceramic wall waste. The setting time, slump flow, porosity, water absorption, compressive and tensile strengths, electrical resistance, chloride penetration resistance, corrosion resistance, and microstructure analysis were investigated. The findings indicated that UFCe significantly enhanced the compressive and tensile strength while decreasing water absorption and pore ratio comparison to the control mixture after 90 days of curing. Moreover, all mixtures displayed significantly lower chloride penetration depth and corrosion rate than the reference mixture. The inclusion of UFCe additionally improved the microstructure due to the enhancement of the ultrafine particle hydration process. On the other hand, the optimum improvement of mechanical strength, durability properties, and microstructure was recorded at a UFCe replacement rate of 0.5 %. For example, the compressive and tensile strengths increased by 33 % and 9 %, respectively, while the total water absorption and migration coefficient were reduced by 42 % and 67 % at 90 days, respectively, compared with the reference sample.
Ansam Ali Hashim, Rana A. Anaee, Mohammed Salah Nasr, Ali Shubbar, Turki S. Alahmari (2025). Mechanical properties, corrosion resistance and microstructural analysis of recycled aggregate concrete made with ceramic wall waste and ultrafine ceria. Journal of Materials Research and Technology, DOI: 10.1016/j.jmrt.2025.03.154.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Journal of Materials Research and Technology
DOI
10.1016/j.jmrt.2025.03.154
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration