Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Mechanical and structural properties of waste rope fibers-based concrete: An experimental study

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Mechanical and structural properties of waste rope fibers-based concrete: An experimental study

0 Datasets

0 Files

English
2022
Case Studies in Construction Materials
Vol 16
DOI: 10.1016/j.cscm.2022.e00964

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohammed Salah Nasr
Mohammed Salah Nasr

Institution not specified

Verified
Shereen Qasim Abdulridha
Mohammed Salah Nasr
Bahaa Hussain Al-Abbas
+1 more

Abstract

Concrete is a brittle material, so it is reinforced with fibers (such as steel, glass and nylon fibers) to improve its ductility. On the other hand, the use of fibers resulting from waste is an interesting issue to avoid the negative impact of these wastes on the environment as well as converting them from useless to other valuable materials. Limited studies addressed the mechanical and structural performance of the locally produced waste rope fibers (WRF) and their reuse in concrete. As a result, the goal of this research is to see how different percentages of WRF (0%, 0.25%, 0.5% and 1% by weight of concrete) affect the workability, mechanical (such as compressive and flexural strength, ultrasonic pulse velocity and bulk density) and structural (such as load deflection, crack width and propagation, and ductility index) properties of concrete. Results indicated that WRF improved the compressive and flexural strength of concrete by up to 22% and 4.3%, respectively. Furthermore, the width of cracks of reinforced concrete beams was considerably reduced and the ductility index of WRF-based beams was 3.07–3.24 compared to 1.45 for fiber-free beams.

How to cite this publication

Shereen Qasim Abdulridha, Mohammed Salah Nasr, Bahaa Hussain Al-Abbas, Zaid Ali Hasan (2022). Mechanical and structural properties of waste rope fibers-based concrete: An experimental study. Case Studies in Construction Materials, 16, pp. e00964-e00964, DOI: 10.1016/j.cscm.2022.e00964.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Case Studies in Construction Materials

DOI

10.1016/j.cscm.2022.e00964

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access