Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Managing hydrology can reduce methane emissions of high-emitting freshwater marshes by half making them present-day net greenhouse gas sinks

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2021

Managing hydrology can reduce methane emissions of high-emitting freshwater marshes by half making them present-day net greenhouse gas sinks

0 Datasets

0 Files

en
2021
DOI: 10.5194/egusphere-egu21-4393

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Dennis Baldocchi
Dennis Baldocchi

University of California, Berkeley

Verified
Alex Valach
Elke Eichelmann
Kyle S. Hemes
+6 more

Abstract

<p><span>Restoring wetlands for climate mitigation purposes could provide an effective method to protect existing soil carbon stocks, as well as act as a negative emission technology by sequestering atmospheric carbon for 100-1000s of years. However, many peatlands have low productivity limiting carbon sequestration, while high productivity marshes often emit large amounts of methane. Studies on water level management to control methane emissions have shown differing results depending on wetland type, climate, as well as measurement method and duration. Here we show with multi-year flux measurements that water level changes were likely responsible for significantly reducing annual methane emissions. To assess management impacts on annual greenhouse gas budgets, continuous high frequency measurements of fluxes are needed, such as by eddy covariance. However, this method is less suited to monitor concurrent manipulation experiments to compare treatments.&#160;</span><span>&#160;</span><span>We compared the impact of water level fluctuations by creating a second timeseries where water drawdown events were removed, which was then gap-filled by a random forest model trained only on measurements from periods when the water table was above the surface. These estimates were used to compare the annual budgets with the complete data and showed that annual methane emissions were up to 50% lower in years where water levels went sufficiently below the peat surface. This threshold was key, as only reductions in water depth above the surface were related to temporary increases in emissions. We further show that in some cases the drawdowns tipped the greenhouse gas budgets so that marshes were net greenhouse gas sinks, as long as the drawdown did not also reduce plant productivity through drought stress. In comparison, wetlands with average annual fluxes would require between approx. 50 and 200 years given current levels of net carbon uptake to offset high methane emissions and become cumulative greenhouse gas sinks.</span><span>&#160;</span></p>

How to cite this publication

Alex Valach, Elke Eichelmann, Kyle S. Hemes, Kuno Kasak, Sara Knox, Patricia Y. Oikawa, Daphne Szutu, Joseph Verfaillie, Dennis Baldocchi (2021). Managing hydrology can reduce methane emissions of high-emitting freshwater marshes by half making them present-day net greenhouse gas sinks. , DOI: https://doi.org/10.5194/egusphere-egu21-4393.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2021

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.5194/egusphere-egu21-4393

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access