0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSubstitution of heteroatoms in graphene is known to tailor its band gap. Another approach to alter the band gap of graphene is to create zero-dimensional graphene quantum dots (GQDs). Here we present the synthesis and photoluminescence properties of B-doped graphene quantum dots (B-GQDs) for the first time, having prepared the B-GQDs by chemical scissoring of B-doped graphene generated by arc-discharge in gas phase. We compare the photoluminescence properties of B-GQDs with nitrogen-doped GQDs and pristine GQDs. Besides, excitation wavelength independent PL emission, excellent upconversion of PL emission is observed in GQDs as well as B- and N-doped GQDs.
Sunita Dey, A. Govindaraj, Kanishka Biswas, Cnr Rao (2014). Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chemical Physics Letters, 595-596, pp. 203-208, DOI: 10.1016/j.cplett.2014.02.012.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Chemical Physics Letters
DOI
10.1016/j.cplett.2014.02.012
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access