RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Low cycle fatigue behaviour of wire arc additively manufactured ER70S-6 steel

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Low cycle fatigue behaviour of wire arc additively manufactured ER70S-6 steel

0 Datasets

0 Files

en
2023
Vol 176
Vol. 176
DOI: 10.1016/j.ijfatigue.2023.107910

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Leroy Gardner
Leroy Gardner

Institution not specified

Verified
Liang Zong
Wanquan Fang
Cheng Huang
+2 more

Abstract

Wire arc additive manufacturing (WAAM) is a method of 3D printing that is well suited to the cost-sensitive construction industry. Fundamental test data on the mechanical properties of WAAM materials, especially under cyclic loading, are however lacking. To bridge this gap, an experimental study into the low cycle fatigue (LCF) behaviour of WAAM ER70S-6 steel has been conducted and is presented herein. Following quasi-static mechanical and geometric characterisation, a series of as-built and machined coupons was tested in different directions relative to the print layer orientation (θ = 0°, 45° and 90°) under constant amplitude LCF loading, covering a range of strain amplitudes from ±0.2% to ±2.0%. Fractographic analysis of the tested coupons was also performed to assess their failure mechanisms. On the basis of the experimental results, strain-life relationships and cyclic stress-strain curves were derived. The geometric undulations of the as-built coupons resulted in a weakening in the LCF properties, and the weakening effect increased with the loading angle θ and strain amplitude. The cyclic hardening/softening response of the WAAM material varied with the imposed strain amplitudes, while significant non-Masing behaviour was observed.

How to cite this publication

Liang Zong, Wanquan Fang, Cheng Huang, Zhongxing Wang, Leroy Gardner (2023). Low cycle fatigue behaviour of wire arc additively manufactured ER70S-6 steel. , 176, DOI: https://doi.org/10.1016/j.ijfatigue.2023.107910.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1016/j.ijfatigue.2023.107910

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access