Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Long-term performance prediction framework based on XGBoost decision tree for pultruded FRP composites exposed to water, humidity and alkaline solution

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Long-term performance prediction framework based on XGBoost decision tree for pultruded FRP composites exposed to water, humidity and alkaline solution

0 Datasets

0 Files

English
2022
Composite Structures
Vol 284
DOI: 10.1016/j.compstruct.2022.115184

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peng Feng
Peng Feng

Tsinghua University

Verified
Xing Liu
Tianqiao Liu
Peng Feng

Abstract

Fiber reinforced polymer (FRP) composites are susceptible to material degradation when exposed to environmental effects. To predict the residual tensile strength and modulus of pultruded FRP composites, an XGBoost decision tree model was developed in this work. XGBoost decision tree, as a machine learning technique, is able to provide accurate predictions for tabular dataset with a good prediction interpretability. In this work, the methodology of XGBoost decision tree was presented in detail. Datasets for training and testing included a total of 746 data points which were collected from an existing database. XGBoost decision tree model predictions were cross-validated with 149 test data, and an excellent agreement was observed, showing R2 values of 0.93 and 0.85 for tensile strength and modulus, respectively. In addition, attribute importance analysis was conducted to quantitatively evaluate the attributes pertaining to FRP degradations, including exposure time, exposure temperature, pH value of environment, fiber volume fraction, plate thickness, fiber type and matrix type. Exposure time and temperature were observed to have the greatest impacts on residual tensile properties. The proposed XGBoost decision tree model provides a new approach for predicting the long-term degradations of FRP composites subjected to environmental effects.

How to cite this publication

Xing Liu, Tianqiao Liu, Peng Feng (2022). Long-term performance prediction framework based on XGBoost decision tree for pultruded FRP composites exposed to water, humidity and alkaline solution. Composite Structures, 284, pp. 115184-115184, DOI: 10.1016/j.compstruct.2022.115184.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Composite Structures

DOI

10.1016/j.compstruct.2022.115184

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access