0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessVision-based 3D occupancy prediction has become a popular research task due to its versatility and affordability. Nowadays, conventional methods usually project the image-based vision features to 3D space and learn the geometric information through the attention mechanism, enabling the 3D semantic occupancy prediction. However, these works usually face two main challenges: 1) Limited geometric information. Due to the lack of geometric information in the image itself, it is challenging to directly predict 3D space information, especially in large-scale outdoor scenes. 2) Local restricted interaction. Due to the quadratic complexity of the attention mechanism, they often use modified local attention to fuse features, resulting in a restricted fusion. To address these problems, in this paper, we propose a language-assisted 3D semantic occupancy prediction network, named LOMA. In the proposed vision-language framework, we first introduce a VL-aware Scene Generator (VSG) module to generate the 3D language feature of the scene. By leveraging the vision-language model, this module provides implicit geometric knowledge and explicit semantic information from the language. Furthermore, we present a Tri-plane Fusion Mamba (TFM) block to efficiently fuse the 3D language feature and 3D vision feature. The proposed module not only fuses the two features with global modeling but also avoids too much computation costs. Experiments on the SemanticKITTI and SSCBench-KITTI360 datasets show that our algorithm achieves new state-of-the-art performances in both geometric and semantic completion tasks. Our code will be open soon.
Yue Cui, Zhi Li, Jiaqiang Wang, Zhou Fang (2024). LOMA: Language-assisted Semantic Occupancy Network via Triplane Mamba. , DOI: https://doi.org/10.48550/arxiv.2412.08388.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.2412.08388
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access