0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLocal energy decomposition (LED) analysis decomposes the interaction energy between two fragments calculated at the domain-based local pair natural orbital CCSD(T) (DLPNO-CCSD(T)) level of theory into a series of chemically meaningful contributions and has found widespread applications in the study of noncovalent interactions. Herein, an extension of this scheme that allows for the analysis of interaction energies of open-shell molecular systems calculated at the UHF-DLPNO-CCSD(T) level is presented. The new scheme is illustrated through applications to the CH2···X (X = He, Ne, Ar, Kr, and water) and heme···CO interactions in the low-lying singlet and triplet spin states. The results are used to discuss the mechanism that governs the change in the singlet-triplet energy gap of methylene and heme upon adduct formation.
Ahmet Altun, Masaaki Saitow, Frank Neese, Giovanni Bistoni (2019). Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework. Journal of Chemical Theory and Computation, 15(3), pp. 1616-1632, DOI: 10.1021/acs.jctc.8b01145.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of Chemical Theory and Computation
DOI
10.1021/acs.jctc.8b01145
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access