0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe combination of lithography and self-assembly provides a powerful means of organizing solution-synthesized nanostructures for a wide variety of applications. We have developed a fluidic assembly method that relies on the local pinning of a moving liquid contact line by lithographically produced topographic features to concentrate nanoparticles at those features. The final stages of the assembly process are controlled first by long-range immersion capillary forces and then by the short-range electrostatic and Van der Waal's interactions. We have successfully assembled nanoparticles from 50 nm to 2 nm in size using this technique and have also demonstrated the controlled positioning of more complex nanotetrapod structures. We have used this process to assemble Au nanoparticles into pre-patterned electrode structures and have performed preliminary electrical characterization of the devices so formed. The fluidic assembly method is capable of very high yield, in terms of positioning nanostructures at each lithographically-defined location, and of excellent specificity, with essentially no particle deposition between features.
J. Alexander Liddle, Yi Cui, Paul Alivisatos (2004). Lithographically-directed self-assembly of nanostructures.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2004
Authors
3
Datasets
0
Total Files
0
Language
en
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration