Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Link Weight Prediction Using Weight Perturbation and Latent Factor

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Link Weight Prediction Using Weight Perturbation and Latent Factor

0 Datasets

0 Files

English
2020
IEEE Transactions on Cybernetics
Vol 52 (3)
DOI: 10.1109/tcyb.2020.2995595

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guanrong Chen
Guanrong Chen

City University Of Hong Kong

Verified
Zhiwei Cao
Yichao Zhang
Jihong Guan
+2 more

Abstract

Link weight prediction is an important subject in network science and machine learning. Its applications to social network analysis, network modeling, and bioinformatics are ubiquitous. Although this subject has attracted considerable attention recently, the performance and interpretability of existing prediction models have not been well balanced. This article focuses on an unsupervised mixed strategy for link weight prediction. Here, the target attribute is the link weight, which represents the correlation or strength of the interaction between a pair of nodes. The input of the model is the weighted adjacency matrix without any preprocessing, as widely adopted in the existing models. Extensive observations on a large number of networks show that the new scheme is competitive to the state-of-the-art algorithms concerning both root-mean-square error and Pearson correlation coefficient metrics. Analytic and simulation results suggest that combining the weight consistency of the network and the link weight-associated latent factors of the nodes is a very effective way to solve the link weight prediction problem.

How to cite this publication

Zhiwei Cao, Yichao Zhang, Jihong Guan, Shuigeng Zhou, Guanrong Chen (2020). Link Weight Prediction Using Weight Perturbation and Latent Factor. IEEE Transactions on Cybernetics, 52(3), pp. 1785-1797, DOI: 10.1109/tcyb.2020.2995595.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Cybernetics

DOI

10.1109/tcyb.2020.2995595

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access