0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLink weight prediction is an important subject in network science and machine learning. Its applications to social network analysis, network modeling, and bioinformatics are ubiquitous. Although this subject has attracted considerable attention recently, the performance and interpretability of existing prediction models have not been well balanced. This article focuses on an unsupervised mixed strategy for link weight prediction. Here, the target attribute is the link weight, which represents the correlation or strength of the interaction between a pair of nodes. The input of the model is the weighted adjacency matrix without any preprocessing, as widely adopted in the existing models. Extensive observations on a large number of networks show that the new scheme is competitive to the state-of-the-art algorithms concerning both root-mean-square error and Pearson correlation coefficient metrics. Analytic and simulation results suggest that combining the weight consistency of the network and the link weight-associated latent factors of the nodes is a very effective way to solve the link weight prediction problem.
Zhiwei Cao, Yichao Zhang, Jihong Guan, Shuigeng Zhou, Guanrong Chen (2020). Link Weight Prediction Using Weight Perturbation and Latent Factor. IEEE Transactions on Cybernetics, 52(3), pp. 1785-1797, DOI: 10.1109/tcyb.2020.2995595.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Cybernetics
DOI
10.1109/tcyb.2020.2995595
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access