0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMost fuzzy models are just numeric. In this study, we revisit, explore and augment a concept of linguistic models, viz., fuzzy models producing results that are information granules, and, specifically, intervals or fuzzy sets. The proposed architecture is formed by constructing a network of linked fuzzy sets (information granules) ininput and output spaces with the aid of a context-based Fuzzy C-Means clustering method. The user centricity of such clustering method is implied by the explicit formulation of fuzzy sets in the output space. The resulting information granules constructed in the input space are conditioned by the corresponding fuzzy sets in the output space. This arrangement can increase the interpretability of the model and represent the model as a collection of logically arranged associations among information granules. The model's overall design process is discussed along with a detailed algorithmic structure. Its experimental evaluations are provided by using both synthetic and publicly datasets. For the former, the model brings the performance improvement ranging from 91% to 250% over the models with information granules uniformly distributed in output space. For the latter, such improvement ranges from 6% to 94%. Finally, a thorough discussion is provided together with guidelines on how to develop such a linguistic model in different contexts.
TaiLong Jing, Witold Pedrycz, Xiubin Zhu, Giancarlo Succi, Zhiwu Li (2023). Linguistic Models: Optimization With the Use of Conditional Fuzzy C-Means. , 8(2), DOI: https://doi.org/10.1109/tetci.2023.3265391.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/tetci.2023.3265391
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration