0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis letter studies content caching in cloud-aided wireless networks, where small cell base stations with limited storage are connected to the cloud via limited capacity fronthaul links. By formulating a utility (inverse of service delay) maximization problem, we propose a cache update algorithm based on spatio-temporal traffic demands. To account for the large number of contents, we propose a content clustering algorithm to group similar contents. Subsequently, with the aid of regret learning at small cell base stations and the cloud, each base station caches contents based on the learned content popularity subject to its storage constraints. The performance of the proposed caching algorithm is evaluated for sparse and dense environments, while investigating the tradeoff between global and local class popularity. Simulation results show 15% and 40% gains in the proposed method compared to various baselines.
Syed Tamoor-ul-Hassan, Sumudu Samarakoon, Mehdi Bennis, Matti Latva-aho, Choong Seon Hong (2017). Learning-Based Caching in Cloud-Aided Wireless Networks. IEEE Communications Letters, 22(1), pp. 137-140, DOI: 10.1109/lcomm.2017.2759270.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Communications Letters
DOI
10.1109/lcomm.2017.2759270
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access