0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLateral orientated growth of In2O3 nanowire (NW) and nanorod (NR) arrays has been achieved by a vapor transport and condensation method on (001) and (111) surfaces of Si substrates. The single crystalline In2O3 NWs and NRs were grown along [21̄1̄] in parallel to the Si ±[11̄0] and lying in the substrate plane. The electrical measurements show that the In2O3 NWs are p-type semiconductor. By N+ doping, the resistivity of the In2O3 NWs has been tuned. The lateral self-aligned In2O3 NW and NR arrays on Si can offer some unique advantages for fabricating parallel nanodevices that can be integrated directly with silicon technology.
L. J. Chen, Zhong Lin Wang, Cheng‐Lun Hsin, Jr‐Hau He, C. Y. Lee, Wen‐Wei Wu, Ping‐Hung Yeh (2007). Lateral Self-Aligned p-Type In<sub>2</sub>O<sub>3</sub> Nanowire Arrays Epitaxially Grown on Si Substrates. , 7(6), DOI: https://doi.org/10.1021/nl0707914.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2007
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nl0707914
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access