0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn complex pattern recognition tasks, objects are typically characterized by means of multimodality attributes, including categorical, numerical, text, image, audio, and even videos. In these cases, data are usually high dimensional, structurally complex, and granular. Those attributes exhibit some redundancy and irrelevant information. The evaluation, selection, and combination of multimodality attributes pose great challenges to traditional classification algorithms. Multikernel learning handles multimodality attributes by using different kernels to extract information coming from different attributes. However, it cannot consider the aspects fuzziness in fuzzy classification. Fuzzy rough sets emerge as a powerful vehicle to handle fuzzy and uncertain attribute reduction. In this paper, we design a framework of multimodality attribute reduction based on multikernel fuzzy rough sets. First, a combination of kernels based on set theory is defined to extract fuzzy similarity for fuzzy classification with multimodality attributes. Then, a model of multikernel fuzzy rough sets is constructed. Finally, we design an efficient attribute reduction algorithm for large scale multimodality fuzzy classification based on the proposed model. Experimental results demonstrate the effectiveness of the proposed model and the corresponding algorithm.
Qinghua Hu, Lingjun Zhang, Yucan Zhou, Witold Pedrycz (2017). Large-Scale Multimodality Attribute Reduction With Multi-Kernel Fuzzy Rough Sets. , 26(1), DOI: https://doi.org/10.1109/tfuzz.2017.2647966.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/tfuzz.2017.2647966
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access