Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Kullback–Leibler Divergence-Based Fuzzy <i>C</i>-Means Clustering Incorporating Morphological Reconstruction and Wavelet Frames for Image Segmentation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

Kullback–Leibler Divergence-Based Fuzzy <i>C</i>-Means Clustering Incorporating Morphological Reconstruction and Wavelet Frames for Image Segmentation

0 Datasets

0 Files

en
2021
Vol 52 (8)
Vol. 52
DOI: 10.1109/tcyb.2021.3099503

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Witold Pedrycz
Witold Pedrycz

University of Alberta

Verified
Cong Wang
Witold Pedrycz
Zhiwu Li
+1 more

Abstract

In this article, we elaborate on a Kullback-Leibler (KL) divergence-based Fuzzy C -Means (FCM) algorithm by incorporating a tight wavelet frame transform and morphological reconstruction (MR). To make membership degrees of each image pixel closer to those of its neighbors, a KL divergence term on the partition matrix is introduced as a part of FCM, thus resulting in KL divergence-based FCM. To make the proposed FCM robust, a filtered term is augmented in its objective function, where MR is used for image filtering. Since tight wavelet frames provide redundant representations of images, the proposed FCM is performed in a feature space constructed by tight wavelet frame decomposition. To further improve its segmentation accuracy (SA), a segmented feature set is reconstructed by minimizing the inverse process of its objective function. Each reconstructed feature is reassigned to the closest prototype, thus modifying abnormal features produced in the reconstruction process. Moreover, a segmented image is reconstructed by using tight wavelet frame reconstruction. Finally, supporting experiments coping with synthetic, medical, and real-world images are reported. The experimental results exhibit that the proposed algorithm works well and comes with better segmentation performance than other peers. In a quantitative fashion, its average SA improvements over its peers are 4.06%, 3.94%, and 4.41%, respectively, when segmenting synthetic, medical, and real-world images. Moreover, the proposed algorithm requires less time than most of the FCM-related algorithms.

How to cite this publication

Cong Wang, Witold Pedrycz, Zhiwu Li, MengChu Zhou (2021). Kullback–Leibler Divergence-Based Fuzzy <i>C</i>-Means Clustering Incorporating Morphological Reconstruction and Wavelet Frames for Image Segmentation. , 52(8), DOI: https://doi.org/10.1109/tcyb.2021.3099503.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/tcyb.2021.3099503

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access