Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Kirigami-Inspired Light-Responsive Conical Spiral Actuators with Large Contraction Ratio Using Liquid Crystal Elastomer Fiber

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Kirigami-Inspired Light-Responsive Conical Spiral Actuators with Large Contraction Ratio Using Liquid Crystal Elastomer Fiber

0 Datasets

0 Files

en
2025
Vol 17 (9)
Vol. 17
DOI: 10.1021/acsami.4c20234

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Wang Yan Qing
Wang Yan Qing

Institution not specified

Verified
Cunping Bai
Jingtian Kang
Wang Yan Qing

Abstract

Liquid crystal elastomers (LCEs) are among the key smart materials driving soft robotics and LCE fibers have garnered significant attention for their rapid response characteristics. A convenient and fast method for programming orientations of liquid crystal molecules is a focal issue in LCE applications. Inspired by the Kirigami technique, here, we propose a novel method for fabricating LCE fibers based on customizable cutting paths and secondary photo-cross-linking. While most existing LCE actuators exhibit contraction ratios of around 30 to 40%, our conical spiral actuator, fabricated from LCE-carbon nanotube (CNT) fiber using the proposed method, demonstrates a significantly higher contraction ratio, reaching up to 80%. The contraction ratio can be controlled by adjusting the cutting path parameters and we elucidate the mechanism linking liquid crystal orientation to the distribution of contraction ratio. Additionally, the conical spiral deformation of the actuator can be manipulated with light radiation, enabling versatile functionalities such as catching, twisting, and gripping. We hope that the novel LCE fiber fabrication method presented provides new insights for programming and preparing LCE fibers, offering a valuable reference for the application of smart soft materials.

How to cite this publication

Cunping Bai, Jingtian Kang, Wang Yan Qing (2025). Kirigami-Inspired Light-Responsive Conical Spiral Actuators with Large Contraction Ratio Using Liquid Crystal Elastomer Fiber. , 17(9), DOI: https://doi.org/10.1021/acsami.4c20234.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsami.4c20234

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access