0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLiquid crystal elastomers (LCEs) are among the key smart materials driving soft robotics and LCE fibers have garnered significant attention for their rapid response characteristics. A convenient and fast method for programming orientations of liquid crystal molecules is a focal issue in LCE applications. Inspired by the Kirigami technique, here, we propose a novel method for fabricating LCE fibers based on customizable cutting paths and secondary photo-cross-linking. While most existing LCE actuators exhibit contraction ratios of around 30 to 40%, our conical spiral actuator, fabricated from LCE-carbon nanotube (CNT) fiber using the proposed method, demonstrates a significantly higher contraction ratio, reaching up to 80%. The contraction ratio can be controlled by adjusting the cutting path parameters and we elucidate the mechanism linking liquid crystal orientation to the distribution of contraction ratio. Additionally, the conical spiral deformation of the actuator can be manipulated with light radiation, enabling versatile functionalities such as catching, twisting, and gripping. We hope that the novel LCE fiber fabrication method presented provides new insights for programming and preparing LCE fibers, offering a valuable reference for the application of smart soft materials.
Cunping Bai, Jingtian Kang, Wang Yan Qing (2025). Kirigami-Inspired Light-Responsive Conical Spiral Actuators with Large Contraction Ratio Using Liquid Crystal Elastomer Fiber. , 17(9), DOI: https://doi.org/10.1021/acsami.4c20234.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsami.4c20234
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access