RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Kinked p–n Junction Nanowire Probes for High Spatial Resolution Sensing and Intracellular Recording

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2012

Kinked p–n Junction Nanowire Probes for High Spatial Resolution Sensing and Intracellular Recording

0 Datasets

0 Files

English
2012
Nano Letters
Vol 12 (3)
DOI: 10.1021/nl300256r

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Charles M. Lieber
Charles M. Lieber

Harvard University

Verified
Zhe Jiang
Quan Qing
Ping Xie
+2 more

Abstract

Semiconductor nanowires and other semiconducting nanoscale materials configured as field-effect transistors have been studied extensively as biological/chemical (bio/chem) sensors. These nanomaterials have demonstrated high-sensitivity from one- and two-dimensional sensors, although the realization of the ultimate pointlike detector has not been achieved. In this regard, nanoscale p–n diodes are attractive since the device element is naturally localized near the junction, and while nanowire p–n diodes have been widely studied as photovoltaic devices, their applications as bio/chem sensors have not been explored. Here we demonstrate that p–n diode devices can serve as a new and powerful family of highly localized biosensor probes. Designed nanoscale axial p–n junctions were synthetically introduced at the joints of kinked silicon nanowires. Scanning electron microscopy images showed that the kinked nanowire structures were achieved, and electrical transport measurements exhibited rectifying behavior with well-defined turn-on in forward bias as expected for a p–n diode. In addition, scanning gate microscopy demonstrated that the most sensitive region of these nanowires was localized near the kinked region at the p–n junction. High spatial resolution sensing using these p–n diode probes was carried out in aqueous solution using fluorescent charged polystyrene nanobeads. Multiplexed electrical measurements show well-defined single-nanoparticle detection, and experiments with simultaneous confocal imaging correlate directly the motion of the nanobeads with the electrical signals recorded from the p–n devices. In addition, kinked p–n junction nanowires configured as three-dimensional probes demonstrate the capability of intracellular recording of action potentials from electrogenic cells. These p–n junction kinked nanowire devices, which represent a new way of constructing nanoscale probes with highly localized sensing regions, provide substantial opportunity in areas ranging from bio/chem sensing and nanoscale photon detection to three-dimensional recording from within living cells and tissue.

How to cite this publication

Zhe Jiang, Quan Qing, Ping Xie, Ruixuan Gao, Charles M. Lieber (2012). Kinked p–n Junction Nanowire Probes for High Spatial Resolution Sensing and Intracellular Recording. Nano Letters, 12(3), pp. 1711-1716, DOI: 10.1021/nl300256r.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2012

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Nano Letters

DOI

10.1021/nl300256r

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access