0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSingle-phase body-centered cubic (bcc) refractory medium- or high-entropy alloys can retain compressive strength at elevated temperatures but suffer from extremely low tensile ductility and fracture toughness. We examined the strength and fracture toughness of a bcc refractory alloy, NbTaTiHf, from 77 to 1473 kelvin. This alloy's behavior differed from that of comparable systems by having fracture toughness over 253 MPa·m
David H. Cook, Punit Kumar, Madelyn I. Payne, Calvin H. Belcher, Pedro P.P.O. Borges, Wenqing Wang, Flynn Walsh, Zehao Li, Arun Devaraj, Mingwei Zhang, Mark Asta, Andrew M. Minor, Enrique J. Lavernia, Diran Apelian, Robert O. Ritchie (2024). Kink bands promote exceptional fracture resistance in a NbTaTiHf refractory medium-entropy alloy. Science, 384(6692), pp. 178-184, DOI: 10.1126/science.adn2428.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
15
Datasets
0
Total Files
0
Language
English
Journal
Science
DOI
10.1126/science.adn2428
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access