0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe study the problem of joint load balancing and interference mitigation in heterogeneous networks in which massive multiple-input multiple-output macro cell base station (BS) equipped with a large number of antennas, overlaid with wireless self-backhauled small cells (SCs), is assumed. Self-backhauled SC BSs with full-duplex communication employing regular antenna arrays serve both macro users and SC users by using the wireless backhaul from macro BS in the same frequency band. We formulate the joint load balancing and interference mitigation problem as a network utility maximization subject to wireless backhaul constraints. Subsequently, leveraging the framework of stochastic optimization, the problem is decoupled into dynamic scheduling of macro cell users, backhaul provisioning of SCs, and offloading macro cell users to SCs as a function of interference and backhaul links. Via numerical results, we show the performance gains of our proposed framework under the impact of SCs density, number of BS antennas, and transmit power levels at low and high frequency bands. It is shown that our proposed approach achieves a 5.6 times gain in terms of cell-edge performance as compared with the closed-access baseline in ultra-dense networks with 350 SC BSs per km <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .
Trung Kien Vu, Mehdi Bennis, Sumudu Samarakoon, Mérouane Debbah, Matti Latva-aho (2017). Joint Load Balancing and Interference Mitigation in 5G Heterogeneous Networks. IEEE Transactions on Wireless Communications, 16(9), pp. 6032-6046, DOI: 10.1109/twc.2017.2718504.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Wireless Communications
DOI
10.1109/twc.2017.2718504
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access