0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessEfficient design and management of water distribution networks is critical for conservation of water resources and minimization of both energy requirements and maintenance costs. Several computational routines have been proposed for the optimization of operational parameters that govern such networks. In particular, multi-objective evolutionary algorithms have proven to be useful both properly describing a network and optimizing its performance. Despite these computational advances, practical implementation of multi-objective optimization algorithms for water networks is an abstruse subject for researchers and engineers, particularly since efficient coupling between multi-objective algorithms and the hydraulic network model is required. Further, even if the coupling is successfully implemented, selecting the proper set of multi-objective algorithms for a given network, and addressing the quality of the obtained results (i.e., the approximate Pareto frontier) introduces additional complexities that further hinder the practical application of these algorithms. Here, we present an open-source project that couples the EPANET hydraulic network model with the jMetal framework for multi-objective optimization, allowing flexible implementation and comparison of different metaheuristic optimization algorithms through statistical quality assessment. Advantages of this project are discussed by comparing the performance of different multi-objective algorithms (i.e., NSGA-II, SPEA2, SMPSO) on case study water pump networks available in the literature.
Jimmy H. Gutiérrez‐Bahamondes, Yamisleydi Salgueiro, Sergio A. Silva-Rubio, Marco A. Alsina, Daniel Mora-Melià, Alberto Patino Vanegas (2019). jHawanet: An Open-Source Project for the Implementation and Assessment of Multi-Objective Evolutionary Algorithms on Water Distribution Networks. , 11(10), DOI: https://doi.org/10.3390/w11102018.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/w11102018
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access