0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe search for simple, earth-abundant, cheap, and nontoxic metal catalysts able to perform industrial hydrogenations is a topic of interest, transversal to many catalytic processes. Here, we show that isolated FeIII-O sites on solids are able to dissociate and chemoselectively transfer H2 to acetylene in an industrial process. For that, a novel, robust, and highly crystalline metal-organic framework (MOF), embedding FeIII-OH2 single sites within its pores, was prepared in multigram scale and used as an efficient catalyst for the hydrogenation of 1% acetylene in ethylene streams under front-end conditions. Cutting-edge X-ray crystallography allowed the resolution of the crystal structure and snapshotted the single-atom nature of the catalytic FeIII-O site. Translation of the active site concept to even more robust and inexpensive titania and zirconia supports enabled the industrially relevant hydrogenation of acetylene with similar activity to the Pd-catalyzed process.
María Tejeda–Serrano, Marta Mon, Bethany Ross, Francisco Gonell, Jesús Ferrando‐Soria, Avelino Avelino, Antonio Leyva‐Pérez, Donatella Armentano, Emilio Pardo (2018). Isolated Fe(III)–O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions. Journal of the American Chemical Society, 140(28), pp. 8827-8832, DOI: 10.1021/jacs.8b04669.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Journal of the American Chemical Society
DOI
10.1021/jacs.8b04669
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access