0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract A number of natural plant products have a long-standing history in both traditional and modern medical applications. Some secondary metabolites induce autophagy and mediate autophagy-dependent healthspan- and lifespan-extending effects in suitable mouse models. Here, we identified isobacachalcone (ISO) as a non-toxic inducer of autophagic flux that acts on human and mouse cells in vitro, as well as mouse organs in vivo. Mechanistically, ISO inhibits AKT as well as, downstream of AKT, the mechanistic target of rapamycin complex 1 (mTORC1), coupled to the activation of the pro-autophagic transcription factors EB (TFEB) and E3 (TFE3). Cells equipped with a constitutively active AKT mutant failed to activate autophagy. ISO also stimulated the AKT-repressible activation of all three arms of the unfolded stress response (UPR), including the PERK-dependent phosphorylation of eukaryotic initiation factor 2α (eIF2α). Knockout of TFEB and/or TFE3 blunted the UPR, while knockout of PERK or replacement of eIF2α by a non-phosphorylable mutant reduced TFEB/TFE3 activation and autophagy induced by ISO. This points to crosstalk between the UPR and autophagy. Of note, the administration of ISO to mice improved the efficacy of immunogenic anticancer chemotherapy. This effect relied on an improved T lymphocyte-dependent anticancer immune response and was lost upon constitutive AKT activation in, or deletion of the essential autophagy gene Atg5 from, the malignant cells. In conclusion, ISO is a bioavailable autophagy inducer that warrants further preclinical characterization.
Qi Wu, Ai-Ling Tian, Sylvère Durand, Fanny Aprahamian, Nitharsshini Nirmalathasan, Wei Xie, Peng Liu, Liwei Zhao, Shuai Zhang, Hui Pan, Didac Carmona‐Gutiérrez, Frank Madeo, Yi Tu, Oliver Kepp, Guido Guido Kroemer (2020). Isobacachalcone induces autophagy and improves the outcome of immunogenic chemotherapy. , 11(11), DOI: https://doi.org/10.1038/s41419-020-03226-x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
15
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1038/s41419-020-03226-x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access