0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessStable isotope fractionation is emerging quickly as a powerful novel technique to study metal uptake and translocation in plants. Fundamental to this development is a thorough understanding of the processes that lead to isotope fractionation under differing environmental conditions. In this study, we investigated Zn and Fe isotope fractionation in rice grown to maturity in anaerobic and aerobic soils under greenhouse conditions. The overall Zn isotope fractionation between the soil and above ground plant material was negligible in aerobic soil but significant in anaerobic soil with isotopically lighter Zn in the rice plant. The observed range of fractionation is in line with previously determined fractionations of Zn in rice grown in hydroponic solutions and submerged soils and emphasizes the effect of taking up different chemical forms of Zn, most likely free and organically complexed Zn. The Zn in the grain was isotopically lighter than in the rest of the above ground plant in rice grown in aerobic and anaerobic soils alike. This suggests that in the course of the grain loading and during the translocation within the plant important biochemical and/or biophysical processes occur. The isotope fractionation observed in the grains would be consistent with an unidirectional controlled transport from shoot to grain with a fractionation factor of α ≈ 0.9994. Iron isotopes showed an isotopic lighter signature in shoot and grain compared to the bulk soil or the leachate in aerobic and anaerobic soils alike. The negative direction of isotopic fractionation is consistent with possible changes in the redox state of Fe occurring during the uptake and translocation processes. The isotope fractionation pattern between shoots and grain material are different for Zn and Fe which finally suggests that different mechanisms operate during translocation and grain-loading in rice for these two key micronutrients.
Tim Arnold, Tamara Marković, G. J. D. Kirk, Maria Schönbächler, Mark Rehkämper, Fang-jie Zhao, Dominik J. Weiß (2015). Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils. Comptes Rendus Géoscience, 347(7-8), pp. 397-404, DOI: 10.1016/j.crte.2015.05.005.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Comptes Rendus Géoscience
DOI
10.1016/j.crte.2015.05.005
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access