0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn recent decades, several studies have considered the use of plastic waste as a partial substitute for aggregate in green concrete. Such concrete has been limited to non-structural applications due to its low strength. This raises whether such concrete can be enhanced for use in some structural applications. This paper reports an attempt to develop a structural-grade concrete containing plastic waste aggregate with high proportions of substitution and confined with carbon fiber reinforced polymer (CFRP) fabrics. Experimental research was conducted involving the casting and testing 54 plain and confined concrete cylinders. A concrete mixture was designed in which the fine aggregate was partially replaced by polyethylene terephthalate (PET) waste plastic at ratios of 0%, 25%, and 50%, and with different w/c ratios of 0.40, 0.45, and 0.55. The results show that confinement has a substantial positive effect on the compressive behavior of PET concrete. The enhancement efficiency increases by 8-190%, with higher enhancement levels for higher substitution ratios. Adding one layer of CFRP fabric raises the ultimate strength of samples that have lost compressive strength to a level close to that of unconfined samples not containing PET. This confinement is accompanied by an increase in the slope of the stress-strain curve and greater axial and lateral strain values at failure. For the specimens confined by CFRP fabric, PET aggregate can be used as a partial substitute for sand at a replacement ratio of up to 50% by volume for structural applications. This paper also considers the ability of existing models to predict the strength of confined-PET concrete circular cross-sections by comparing model predictions with experimental results. The strength of confined PET concrete elements can't be accurately predicted by any of the models that are already out there. It's important to come up with a new model for these elements.
Shaker Qaidi, Yaman S. S. Al-Kamaki, Riadh Al‐Mahaidi, Ahmed Salih Mohammed, Hemn Unis Ahmed, Osama Zaid, Fadi Althoey, Jawad Ahmad, Haytham F. Isleem, I D Bennetts (2022). Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate. , 17(7), DOI: https://doi.org/10.1371/journal.pone.0269664.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1371/journal.pone.0269664
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access