Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Intracellular energy storage mediating soil microbial resource stress

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2022

Intracellular energy storage mediating soil microbial resource stress

0 Datasets

0 Files

English
2022
DOI: 10.5194/egusphere-egu22-7699

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Michaela Dippold
Michaela Dippold

Institution not specified

Verified
Ding Yang
Martin Komainda
Kyle Mason‐Jones
+2 more

Abstract

<p>A diverse range of soil microorganisms accumulate energy to secure their future needs under resource fluctuation or deficiency. Microbial intracellular storage can substantially mediate the stress of resource variability across time, thereby supporting growth and reproduction. Microbial storage is well known in industrial applications and under pure culture conditions, yet few studies address its importance in the soil. To evaluate how widespread microbial energy storage is in soil, we quantified the contents of two intracellular storage compounds, polyhydroxybutyrate (PHB) and triacylglycerides (TAGs), from seven permanent grasslands in Germany differing in field management (grazing/mowing and fertilizing) and soil types. In winter 2021, soil was collected from two depths, 5-10 cm called topsoil, and >30 cm called subsoil, to capture different soil carbon inputs from grass roots. The storage compound contents were determined by gas chromatography&#8211;mass spectrometry (GC-MS). We hypothesized that the carbon input controls the storage compound levels. From topsoil to subsoil, as root carbon inputs (estimated from the fresh root weight) drop with depth, microbial storage levels follow suit. Dissolved organic carbon (DOC) was measured to qualify carbon availability to microorganisms, and microbial biomass carbon (MBC) was to assess microbial biomass. The root weight in the topsoil was 20-50 times higher than in the subsoil, while MBC and DOC contents were 3-4 and 1.5-2.5 times higher, respectively. Storage levels and MBC decreased with depth, and showed a positive correlation with DOC. This experiment allowed us to quantify intracellular storage occurrence in soils and to understand how its distribution related to root carbon input. These results point out that microbial intracellular carbon storage might accumulate according to the available carbon level (root carbon inputs) for microorganisms. Thus, this carbon plays a pivotal role for microbial ecology of soils as it prepares the microbial cells to survive throughout the winter when less carbon is provided by plants.</p>

How to cite this publication

Ding Yang, Martin Komainda, Kyle Mason‐Jones, Michaela Dippold, Callum C. Banfield (2022). Intracellular energy storage mediating soil microbial resource stress. , DOI: 10.5194/egusphere-egu22-7699.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2022

Authors

5

Datasets

0

Total Files

0

Language

English

DOI

10.5194/egusphere-egu22-7699

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access