Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Intervening on psychopathology networks: Evaluating intervention targets through simulations

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Intervening on psychopathology networks: Evaluating intervention targets through simulations

0 Datasets

0 Files

English
2021
Methods
Vol 204
DOI: 10.1016/j.ymeth.2021.11.006

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Denny Borsboom
Denny Borsboom

University Of Amsterdam

Verified
Gabriela Lunansky
Jasper Naberman
Claudia D. van Borkulo
+3 more

Abstract

Identifying the different influences of symptoms in dynamic psychopathology models may hold promise for increasing treatment efficacy in clinical applications. Dynamic psychopathology models study the behavioral patterns of symptom networks, where symptoms mutually enforce each other. Interventions could be tailored to specific symptoms that are most effective at lowering symptom activity or that hinder the further development of psychopathology. Simulating interventions in psychopathology network models fits in a novel tradition where symptom-specific perturbations are used as in silico interventions. Here, we present the NodeIdentifyR algorithm (NIRA) to identify the projected most efficient, symptom-specific intervention target in a network model (i.e., the Ising model). We implemented NIRA in a freely available R package. The technique studies the projected effects of symptom-specific interventions by simulating data while symptom parameters (i.e., thresholds) are systematically altered. The projected effect of these interventions is defined in terms of the expected change in overall symptom activity across simulations. With this algorithm, it is possible to study (1) whether symptoms differ in their projected influence on the behavior of the symptom network and, if so, (2) which symptom has the largest projected effect in lowering or increasing overall symptom activation. As an illustration, we apply the algorithm to an empirical dataset containing Post-Traumatic Stress Disorder symptom assessments of participants who experienced the Wenchuan earthquake in 2008. The most important limitations of the method are discussed, as well as recommendations for future research, such as shifting towards modeling individual processes to validate these types of simulation-based intervention methods.

How to cite this publication

Gabriela Lunansky, Jasper Naberman, Claudia D. van Borkulo, Chen Chen, Li Wang, Denny Borsboom (2021). Intervening on psychopathology networks: Evaluating intervention targets through simulations. Methods, 204, pp. 29-37, DOI: 10.1016/j.ymeth.2021.11.006.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Methods

DOI

10.1016/j.ymeth.2021.11.006

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access