Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Interphase Percolation Mechanism Underlying Elastomer Reinforcement

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

Interphase Percolation Mechanism Underlying Elastomer Reinforcement

0 Datasets

0 Files

English
2017
The Journal of Physical Chemistry C
Vol 121 (51)
DOI: 10.1021/acs.jpcc.7b11239

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guo Baochun
Guo Baochun

South China University of Technology

Verified
Siwu Wu
Min Qiu
Zhenghai Tang
+1 more

Abstract

Glassy interphase has been claimed to be of vital importance for mechanical reinforcement of elastomer nanocomposites (ENCs), but the evolution of interphase topology in correlation to reinforcement percolation remains uncertain. Here, an accurate interfacial regulation strategy upon implementing an interphase percolation mechanism is exploited to realize percolation of mechanical performance toward striking elastomer reinforcement. Architecture design of interfacial metal–ligand bridges accomplishes firm anchoring between elastomer skeleton and carbon nanodots, leading to the formation of interfacial metal-enriched regions. The volume fraction of the interfacial region systemically enlarges upon increase of interfacial bridges, which finally overlaps with neighboring domains to form a penetrating interphase. The topological evolution of the interfacial region is quantitatively monitored upon small-angle X-ray scattering and dielectric measurements, which exhibits a similar percolation behavior in sync with that of macroscopic mechanical performance. Furthermore, the interphase exhibits much slower relaxation dynamics than in bulk polymer, which significantly improves the network rigidity and hence accounts for the prominent elastomer reinforcement. This investigation corroborates that the formation of penetrating interphase may be an executable mechanism to induce the reinforcement percolation of ENCs. We further envision that the implementation of interphase percolation mechanism can be a universal avenue to afford rationalized optimization of ENCs.

How to cite this publication

Siwu Wu, Min Qiu, Zhenghai Tang, Guo Baochun (2017). Interphase Percolation Mechanism Underlying Elastomer Reinforcement. The Journal of Physical Chemistry C, 121(51), pp. 28594-28603, DOI: 10.1021/acs.jpcc.7b11239.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

The Journal of Physical Chemistry C

DOI

10.1021/acs.jpcc.7b11239

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access