0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessArtificially stacking 2D materials (2DMs) into vdW heterostructures creates materials with properties not present in nature that offer great potential for various applications such as flexible electronics. Properties of such stacked structures are controlled largely by the interfacial interactions and the structural integrity of the 2DMs. In spite of their crucial roles, interfacial stress transfer and the failure mechanisms of the vdW heterostructures, particularly during deformation, have not been well addressed so far. In this work, the interfacial stress transfer and failure mechanisms of a MoS 2 /graphene vdW heterostructure are studied, through the strain distributions both laterally in individual 2DMs and vertically across different 2DMs revealed in‐situ. The fracture of the MoS 2 and the associated states of stress and strain are monitored experimentally. This enables various interfacial properties, such as the interfacial shear strength and interfacial fracture energy, to be estimated. Based only on the measured strength and interfacial properties of a single vdW heterostructure, a failure criterion is proposed to predict the failure mechanisms of similar vdW heterostructures with any lateral dimensions. This work provides an insight to the deformation micromechanics of vdW heterostructures that are of great value for their miniaturization and applications, especially in flexible electronics.
Zheling Li, Mufeng Liu, Pankaj Kumar, Zhenghua Chang, Guocheng Qi, Pei He, Yujie Wei, Robert J. Young, Konstantin ‘kostya’ Novoselov (2024). Interfacial Stress Transfer and Fracture in van der Waals Heterostructures. Advanced Materials, 36(47), DOI: 10.1002/adma.202411244.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Advanced Materials
DOI
10.1002/adma.202411244
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access