0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the global effort to mitigate climate change and reduce CO2 emissions, this study introduces an innovative, pioneering approach that combines artificial intelligence and experimental methods to investigate the CO2 footprint (CO2-FP) in fly ash geopolymer concrete materials. Three powerful non-linear intelligent learners, including Gaussian Process Regression (GPR) with Response Surface Methodology (RSM), Support Vector Regression (SVR), and Standalone Decision Tree Regression (DTR) are employed. The models are developed using seven input features related to the curing temperature, fly ash content, concentrations of coarse and fine aggregates, alkaline activators (Na2SiO3, NaOH) content, and superplasticizer. To identify the most influential input features, three different combinations (combo-1, combo-2, and combo-3) of these features are utilized in model building. The models' performance is assessed using key metrics such as coefficient of correlation (CC), Nash Sutcliffe coefficient efficiency (NSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). During the verification phase, the GPR-3 [Combo-3] model emerges as the most efficient in predicting the CO2-FP, with a high CC value of 0.9645 and NSE value of 0.9292. Consistently, Combo-3 demonstrates superior performance across all the models, underscoring the significance of the selected features. The findings of this study provide valuable guidance to industries and policymakers, enabling them to optimize concrete compositions and minimize CO2 emissions, thus contributing to global environmental sustainability.
Y.S. Wudil, Amin Al‐Fakih, Mohammed Al-osta, M.A. Gondal (2023). Intelligent optimization for modeling carbon dioxide footprint in fly ash geopolymer concrete: A novel approach for minimizing CO2 emissions. Journal of environmental chemical engineering, 12(1), pp. 111835-111835, DOI: 10.1016/j.jece.2023.111835.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of environmental chemical engineering
DOI
10.1016/j.jece.2023.111835
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access