0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAn "inorganic micelle" structure that has a hydrophilic cavity and hydrophobic surface has been synthesized. The inorganic micelles possess large surface area and controllable hydrophobic/hydrophilic interface. It shows high catalytic efficiency and great recyclability in the bromination of alcohols. This work suggests that inorganic micelles may be suitable for selective organic syntheses as well as industrial applications and demonstrates the value of translating nanostructure design from organic to inorganic.
Qiao Zhang, Xing‐Zhong Shu, J. Matthew Lucas, F. Dean Toste, Gabor Somorjai, Paul Alivisatos (2013). Inorganic Micelles as Efficient and Recyclable Micellar Catalysts. , 14(1), DOI: https://doi.org/10.1021/nl4045372.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nl4045372
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access