0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAvailable experimental studies on the effect of the interfacial transition zone (ITZ) on transport properties of cement-based composite materials appear to be ambiguous. The main objective of this work was to enhance the understanding of the relationship between ITZ and transport properties of Portland cement-based materials by using both a rapid chloride migration test and theoretical calculations. A densification factor which is related to aggregate volume content was introduced to further determine the transport properties of ITZ. Results indicate that the overall porosity decreased with increasing aggregate volume content due to the dilution effect by impermeable aggregates. The porosity was above the theoretical dilution line obtained from P0×(1-Vagg) for mortars with more than 20% of aggregate, which can be attributed to the presence of high porous ITZ. On the other hand, more porous ITZ was expected to be accompanied by a denser bulk cement matrix, which leaded to a decrease in the porosity of mortar with less than 35% of aggregate. The ITZ effect would dominate the blocking aggregate, densification and tortuosity of bulk paste when aggregate volume content exceeded 0.35. The ratio between the migration coefficient of the ITZ and that of the matrix (DITZ/Dmatrix) increased with aggregate volume content and assumed ITZ thickness. In addition, the influence of ITZ increased with increasing the degree of interconnection slightly until 1.0. Beyond this value, a sudden increase in DITZ/Dmatrix ratio was observed indicating the negative percolation effect when the adjacent ITZ start to interconnect.
Kai Wu, Linglin Xu, Geert De Schutter, Huisheng Shi, Ye Guang (2015). Influence of the Interfacial Transition Zone and Interconnection on Chloride Migration of Portland Cement Mortar. , 13(3), DOI: https://doi.org/10.3151/jact.13.169.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3151/jact.13.169
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access