0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDue to their excellent properties, graphene-like 2D structures have been widely used to reinforce aluminium nanocomposites. However, the interfacial behaviour presented by different types of holey graphenes and their reinforcing effect on the mechanical properties of the nanocomposites are still not completely clear. In this work, Molecular Dynamics simulations are used to investigate the interfacial behaviour between five different graphenes and an aluminium matrix (Al-graphene, Al-Phagraphene, Al-haeckelite, Al-N-holey-graphene (hG) and Al-B-hG). Using pull-out loading test, the influence of the 2D nanofillers porosity on the mechanical properties of the nanocomposites is assessed. Additionally, and regarding the aluminium matrix, two different cases were studied: (i) the aluminium matrix was not recrystallized and (ii) the aluminium matrix was melted and then recrystallized. It was found that the introduction of porous graphene improves the interfacial adhesion in the nanocomposites while the pull-out force and interfacial shear strength of the nanocomposites are significantly higher when the aluminium matrix is previously melted and then recrystallized.
Cátia Guarda, Bruno Faria, Nuno Silvestre, José N. Canongia Lopes (2023). Influence of matrix recrystallization and nanofiller porosity on the interfacial properties of holey graphene-aluminium nanocomposites. Composite Structures, 312, pp. 116856-116856, DOI: 10.1016/j.compstruct.2023.116856.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Composite Structures
DOI
10.1016/j.compstruct.2023.116856
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access