RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Influence of co-applied biochar and enhanced basanite weathering on soil enzyme kinetics in an agricultural soil

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2025

Influence of co-applied biochar and enhanced basanite weathering on soil enzyme kinetics in an agricultural soil

0 Datasets

0 Files

English
2025
DOI: 10.5194/egusphere-egu25-18855

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Michaela Dippold
Michaela Dippold

Institution not specified

Verified
Maria Seedtke
Svenja Stock
Michaela Dippold
+5 more

Abstract

Soil microbes are major regulators of soil ecosystem services and play a crucial role for carbon and nutrient cycling. Soil microbial activity can be altered by the application of biochar and of rock powder for enhanced weathering – two promising carbon dioxide removal (CDR) techniques. While most recent research considered both CDR methods separately, their co-application could offer additional benefits for CDR, soil health, and crop yield. Here, we compare the influence of pure wood biochar and pure basanite powder with the product of pre-pyrolytic combination of woody biomass and basanite powder (referred to as PyMiCCS). To determine the influence of joint pyrolysis, we also include a post-pyrolysis-combination (PPC) equivalent to PyMiCCS. The aim of this study was to determine the influence of co-applied biochar and basanite powder on enzyme kinetics. Therefore, we grew cabbage turnip (Brassica oleracea) in lysimeters filled with a sandy agricultural topsoil (control) and an amendment (biochar, basanite powder, PyMiCCS, PPC) over a period of nine weeks. Afterwards, the soil samples were analyzed for enzyme kinetics of ß-glucosidase, chitinase, leucine-aminopeptidase, and acid phosphatase.Preliminary results show significantly enhanced Vmax (maximum rate of soil enzyme activity) of acid phosphatase in all treatments compared to the other studied enzymes, implying a relatively high demand for P. Furthermore, we found that treatments containing biochar, PyMiCCS, and PCC had up to 50% lower Vmax values for ß-glucosidase, chitinase, and acid phosphatase relative to control and basanite treatments. In contrast to this, leucine-aminopeptidase showed an increase in Vmax of up to 40% in biochar, PyMiCCS, and PCC treatments compared to control and basanite treatments. This could be interpreted as a shift of nutrient demand towards N due to the addition of biochar, PyMiCCS, and PCC, resulting in an increased production of the N-cycle-related leucine-aminopeptidase. This increased N demand could be caused by the fixation of N-rich molecules by the amendments, or by the release of other nutrients, such as P or C. Consistently with the latter, we observed a significant increase in C content of up to 50% following the application of biochar, PyMiCCS, and PPC, whereas the N content showed little to no increase. Our results so far indicate that the co-application of biochar and basanite powder affects soil microbial activity by shifting nutrient availability. However, the interactive effect of the co-applied amendments on mineral N and microbial biomass is still subject to further analyses.

How to cite this publication

Maria Seedtke, Svenja Stock, Michaela Dippold, Susanne E. Hamburger, Claudia Kammann, Nikolas Hagemann, Annette Eschenbach, Joscha N. Becker (2025). Influence of co-applied biochar and enhanced basanite weathering on soil enzyme kinetics in an agricultural soil. , DOI: 10.5194/egusphere-egu25-18855.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2025

Authors

8

Datasets

0

Total Files

0

Language

English

DOI

10.5194/egusphere-egu25-18855

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access