0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDespite recent interest in the ecosystem impacts of invasive aboveground organisms, most work in this area has focused on effects of invasive plants, and the effects of invasive herbivores and predators remain poorly understood. We studied 18 forested, offshore islands in northern New Zealand. Nine of these host high densities of burrowing seabirds that serve as ecosystem drivers by transporting nutrients from the ocean to land. The other nine have been invaded over the past 50–150 years by rat species introduced from Europe which serve as predators of seabird eggs and chicks and severely reduce their densities. We collected fully expanded leaves and fresh leaf litter from invaded and uninvaded islands for each of 12 perennial plant species that represent a wide spectrum of life forms from ground dwelling to emergent canopy species. We found that, across these species, invasion by rats significantly reduced nitrogen (N) but not phosphorus (P) concentrations of foliage and litter, promoted N but not P resorption from leaves before litter fall, and reduced the release of N but not P from decomposing litter. Rat invasion also negatively affected litter decomposability but had no overall effects on litter quality variables other than N. Our results provide evidence that rat invasion causes more conservative cycling of N but not P through foliage and litter and limitation of ecological processes by N but not P. We found few instances in which the effects of rat invasion on response variables varied significantly across plant species, meaning that invasion had similar effects for species that varied greatly in growth form and foliar and litter quality. Further, correlation analyses across the 12 species showed that foliar and litter quality traits were poor predictors of how invasion effects on resorption and decomposition variables varied among species. Our results show that the effects of invasive predators on native prey can have substantial indirect effects on variables relevant for ecosystem functioning. These types of effects are probably widespread, especially given the role of seabirds in improving soil fertility in many coastal ecosystems worldwide and the wide global distribution of predators of seabirds.
David A. Wardle, Peter J. Bellingham, Karen I. Bonner, Christa P. H. Mulder (2009). Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabird‐dominated islands. Ecology, 90(2), pp. 452-464, DOI: 10.1890/08-0097.1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Ecology
DOI
10.1890/08-0097.1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access