0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationDirect bandgap 2D semiconductor materials such as monolayers of transition metal dichalcogenides (TMDCs), show great promise in optoelectronic devices enabling exciting new technologies such as ultra-thin quantum light LED’s [1]. These structures can have incredible advantages, enabling almost seamless integration into conventional silicon structures. However, extracting light out of these structures can be a challenge, often requiring costly and time consuming processing e.g. engineered waveguides or cavities [2]. Furthermore none of these methods allow you to observe the light directly, therefore are unhelpful in certain applications, such as an optical version of a quantum unique device [3]. We have previously demonstrated that epoxy based solid immersion lenses can be used to increase light out of semiconductor nanostructures. We furthered this idea to see if they could be used to increase the light out of monolayer TMDC materials; and investigate how the epoxy-2D material interface affects the emission. Our studies revealed that a SIL can greatly enhance the photoluminescence of WSe2 by up to 6x (more than theory predicts for a SIL of this shape), without effecting the wavelength (figure 1). However we also found that the epoxy appears to reduce the emission of the MoS2, suggesting that there could be doping effects due to the epoxy. Overall this method shows great promise as a cheap, and scalable method for enhancing the efficiency of low intensity WSe2 based devices.
Christopher Woodhead, Jonny Roberts, Yasir J. Noori, Yameng Cao, Ramón Bernardo Gavito, Aleksey Kozikov, Konstantin ‘kostya’ Novoselov (2016). Increasing the extraction efficiency of quantum light from 2D materials.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
7
Datasets
0
Total Files
0
Language
English
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access