0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSeawater generally forms stratified layers with lighter waters near the surface and denser waters at greater depth. This stable configuration acts as a barrier to water mixing that impacts the efficiency of vertical exchanges of heat, carbon, oxygen and other constituents. Previous quantification of stratification change has been limited to simple differencing of surface and 200-m depth changes and has neglected the spatial complexity of ocean density change. Here, we quantify changes in ocean stratification down to depths of 2,000 m using the squared buoyancy frequency N2 and newly available ocean temperature/salinity observations. We find that stratification globally has increased by a substantial 5.3% [5.0%, 5.8%] in recent decades (1960–2018) (the confidence interval is 5–95%); a rate of 0.90% per decade. Most of the increase (~71%) occurred in the upper 200 m of the ocean and resulted largely (>90%) from temperature changes, although salinity changes play an important role locally. Seawater properties—temperature, salinity and density—cause stratification of the water column, limiting vertical exchange. Considering down to 2,000 m, ocean stratification is shown to have increased ~5.3% since 1960, with ~71% of the change occurring in the upper 200 m primarily from warming.
Guancheng Li, Lijing Cheng, Jiang Zhu, Kevin E Trenberth, Michael Mann, John Abraham (2020). Increasing ocean stratification over the past half-century. Nature Climate Change, 10(12), pp. 1116-1123, DOI: 10.1038/s41558-020-00918-2.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Nature Climate Change
DOI
10.1038/s41558-020-00918-2
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access