0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessQuantitative understanding of nanoscale interactions is a prerequisite for harnessing the remarkable collective properties of nanoparticle systems. Here, we report the combined use of liquid-phase transmission electron microscopy and electron beam lithography to elucidate the interactions between charged nanorods in a predefined potential energy landscape. In situ site-selective lift-off of surface-functionalized lithographed gold nanorods is achieved by patterning them with adhesion layer materials that undergo etching at different rates. Analysis of the subsequent nanorod motion, which is two-dimensionally confined as a result of the particle-substrate attraction, allows quantification of interparticle interactions in a lithographically engineered environment. For lithographed nanorods patterned with the same adhesion layer material, their self-assembly behavior following lift-off is tuned by changing their starting spatial arrangement. Our approach facilitates investigation of interparticle interactions in designed nanoparticle systems and affords fundamental insights into the role of the potential energy landscape in determining the kinetic pathway for nanoparticle self-assembly.
Hoduk Cho, Ivan A. Moreno‐Hernandez, Vida Jamali, Myoung Hwan Oh, Paul Alivisatos, Hoduk Cho, Ivan A. Moreno‐Hernandez, Vida Jamali, Myoung Hwan Oh, Paul Alivisatos (2020). In Situ Quantification of Interactions between Charged Nanorods in a Predefined Potential Energy Landscape. , 21(1), DOI: https://doi.org/10.1021/acs.nanolett.0c04198.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.nanolett.0c04198
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access