Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@C, N co-doped anatase/rutile: Efficient charge separation and enhanced visible-light photocatalytic performance

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@C, N co-doped anatase/rutile: Efficient charge separation and enhanced visible-light photocatalytic performance

0 Datasets

0 Files

English
2017
Applied Surface Science
Vol 436
DOI: 10.1016/j.apsusc.2017.11.229

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohd Hafiz Dzarfan Othman
Mohd Hafiz Dzarfan Othman

Universiti Teknologi Malaysia

Verified
Mohamad Azuwa Mohamed
Juhana Jaafar
M.F.M. Zain
+7 more

Abstract

Herein, we demonstrated the simultaneous formation of multi-component heterojunction consisting graphitic carbon nitride (g-C3N4) and C, N co-doped anatase/rutile mixed phase by using facile sol-gel assisted heat treatment. The evolution of core-shell nanostructures heterojunction formation was elucidated by varying the temperature of heat treatment from 300°C to 600°C. Homogeneous heterojunction formation between g-C3N4 and anatase/rutile mixed phase was observed in gT400 with C and N doping into TiO2 lattice by O substitution. The core-shell nanoarchitectures between g-C3N4 as shell, and anatase/rutile mixed phase as core with C and N atoms are doped at the interstitial positions of TiO2 lattice was observed in gT500. The result indicated that core-shell nanoarchitectures photocatalyst (gT500) prepared at 500 ◦C exhibited the highest photocatalytic activity in the degradation of methyl orange under visible light irradiation. Meanwhile, the possible mechanisms of charge generation, migration, action species and reaction that probably occur at the gT500 sample were also proposed. The photodegradation results of gT500 correlated completely with the results of the PEC and photoluminescence analysis, which directly evidenced improved charge separation and migration as the crucial parameters governing photocatalysis. It is worthy to note that, the simultaneous formation of multicomponent heterojunction with core-shell structure provided an enormous impact in designing highly active photocatalyst with superior interfacial charge transfer.

How to cite this publication

Mohamad Azuwa Mohamed, Juhana Jaafar, M.F.M. Zain, Lorna Jeffery Minggu, Mohammad B. Kassim, Mohamad Saufi Rosmi, Nur Hashimah Alias, Nor Azureen Mohamad Nor, Wan Norharyati Wan Salleh, Mohd Hafiz Dzarfan Othman (2017). In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@C, N co-doped anatase/rutile: Efficient charge separation and enhanced visible-light photocatalytic performance. Applied Surface Science, 436, pp. 302-318, DOI: 10.1016/j.apsusc.2017.11.229.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

10

Datasets

0

Total Files

0

Language

English

Journal

Applied Surface Science

DOI

10.1016/j.apsusc.2017.11.229

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access