0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study investigates the effectiveness of replacing the cement with 0, 5, 10, 15, and 20 wt.% of ceramic waste powder (HCCP) to improve the performance of recycled aggregate concrete (RCA) prepared using 25 wt.% wall tile ceramic coarse aggregates. The slump, initial and final setting time, compressive strength, splitting tensile strength, flexural strength, electrical resistivity, bulk density, porosity, total and surface water absorption, pH level, ultrasonic pulse velocity, dynamic elastic modulus, chloride ion diffusion coefficient, chloride penetration depth, microstructure analysis, and environmental assessment properties were investigated. The results showed that replacing cement with HCCP by 5 to 20 wt.% prolonged the setting time and improved all hardened properties. The highest improvements in mechanical properties were observed at 5 wt.% HCCP, with increasing rates of 26.5%, 22%, and 22.4% at 90 days for compressive strength, tensile strength, and flexural strength, respectively. On the other hand, the optimum enhancement for the durability, microstructural, and environmental efficiency properties was recorded at a 20 wt.% HCCP replacement rate. However, the strength at this ratio tended to decrease but remained higher than that of the control RAC. For instance, the total water absorption, surface water absorption, void ratio, chloride penetration depth, and migration coefficient were reduced by 47%, 45%, 38%, 62.3%, and 55.52%, respectively, compared to the reference sample.
Ansam Ali Hashim, Rana A. Anaee, Mohammed Salah Nasr (2025). Improving the Mechanical, Corrosion Resistance, Microstructural and Environmental Performance of Recycled Aggregate Concrete Using Ceramic Waste Powder as an Alternative to Cement. Ceramics, 8(1), pp. 11-11, DOI: 10.3390/ceramics8010011.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Ceramics
DOI
10.3390/ceramics8010011
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access