0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA facile post-doping of magnesium hydroxide (MH) is proposed to improve the flame retardancy of hydrophobic silica aerogels (SA). The lower tap density (0.12 g/cm3) and thermal conductivity (26 mW/m/K) are still maintained at the largest MH content of 20%. Meanwhile, the gross calorific value of the SA/MH is reduced by 15% and the thermal stability is improved to over ~545 °C. The SA/MH pyrolysis process can be divided into four stages, while the hydrophobic SA is a two-stage pyrolysis process. Furthermore, the improved flame retardancy of SA/MH is mainly attributed to the thermal decomposition of MH, the pyrolysis products (MgO, SiO2 and H2O) and the reaction between MgO and SiO2. The research outcomes demonstrate the validity of using MH as dopant to improve the flame retardancy of hydrophobic SA by a facile post-doping, which is beneficial to the expansion of hydrophobic SA in their practical thermal insulation application.
Yan Zhang, Li‐Ling Wu, Xi Deng, Yunmeng Deng, Xiaoxu Wu, Long Shi, Ming Li, Qiong Liu, Xudong Cheng, Zhi Li (2021). Improving the flame retardance of hydrophobic silica aerogels through a facile post-doping of magnesium hydroxide. Advanced Powder Technology, 32(6), pp. 1891-1901, DOI: 10.1016/j.apt.2021.03.041.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Advanced Powder Technology
DOI
10.1016/j.apt.2021.03.041
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access