0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe multistage hybrid flow shop (HFS) scheduling problems are considered in this paper. Hybrid flowshop scheduling problems were proved to be NP-hard. A recently developed cuckoo search (CS) metaheuristic algorithm is presented in this paper to minimize the makespan for the HFS scheduling problems. A constructive heuristic called NEH heuristic is incorporated with the initial solutions to obtain the optimal or near optimal solutions rapidly in the improved cuckoo search (ICS) algorithm. The proposed algorithm is validated with the data from a leading furniture manufacturing company. Computational results show that the ICS algorithm outperforms many other metaheuristics.
M.K. Marichelvam, T. Prabaharan, Xin-she Yang (2014). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, pp. 93-101, DOI: 10.1016/j.asoc.2014.02.005.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Applied Soft Computing
DOI
10.1016/j.asoc.2014.02.005
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access