RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Impacts of storey number of buildings on solar chimney performance: A theoretical and numerical approach

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Impacts of storey number of buildings on solar chimney performance: A theoretical and numerical approach

0 Datasets

0 Files

English
2022
Energy
Vol 261
DOI: 10.1016/j.energy.2022.125200

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Haihua Zhang
Yao Tao
Guomin Zhang
+3 more

Abstract

Under the fact that solar chimney was less investigated in multi-storey buildings, a theoretical model was then developed for solar chimney-induced buoyancy-driven natural ventilation. This is the first study addressing the influences of the storey number on ventilation rates for multi-storey solar chimney (SC) buildings. A storey correction coefficient was proposed to predict the SC-induced ventilation at various floors with identical air inlet areas. The theoretical model was established to elucidate the relationship among ventilation flow rates, solar radiation intensity, vent sizes and storey number (f), where the numerical results have also been validated. Although the total SC ventilation performance is enhanced, its enhancement with a higher chimney cavity was less effective when compared to those solar chimneys in single-storey buildings. This is due to the higher chimney cavity hindering the ventilation performance of the lower floors. The volume flow rate decreased exponentially for the top floors of each building when the two-storey building increased to a seven-storey building. For buildings with more than three storeys, the overall volume flow rate was more sensitive to the cavity gap than the solar radiation intensity, with an improvement in ventilation by 45.6% compared to 26.0% under the same conditions, respectively. To maximize the total flow rate, the optimal cavity gap should increase gradually from 0.2 m to 1.5 m for single-to seven-storey buildings. The findings of this study contribute to a further application of solar chimneys in multi-storey buildings.

How to cite this publication

Haihua Zhang, Yao Tao, Guomin Zhang, Jie Li, Sujeeva Setunge, Long Shi (2022). Impacts of storey number of buildings on solar chimney performance: A theoretical and numerical approach. Energy, 261, pp. 125200-125200, DOI: 10.1016/j.energy.2022.125200.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Energy

DOI

10.1016/j.energy.2022.125200

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access